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Abstract 

The accurate hysteresis characteristics modeling of 
ferromagnetic materials is crucial to optimally design of 
electro-magnetic equipment. In this paper, the hysteresis 
play model is improved to simulate magnetic 
characteristics of ferrite at variable temperature 
conditions based on recurrent neural network. The 
proposed model predicts the magnetic field strength of 
N87 ferrite with the Mean Square Error (MSE) better than 
0.3%. The results demonstrate that ferrite materials can 
be accurately described by the improved model trained 
with a limited amount of data. 

1 Introduction 

The precise electromagnetic simulation of electrical 
equipment is inseparable from the accurate and efficient 
magnetic material hysteresis model. The magnetic 
properties of of ferromagnetic materials change with the 
variable temperature, however, traditional hysteresis 
models are incapable of  describing the effect of 
temperature on magnetic properties accurately. 
Therefore, it is necessary to establish an accurate 
hysteresis model influenced by temperature effect. 

The Preisach model has become the most widely used 
hysteresis model because of its advantages in 
considering the influence of magnetization history and 
easy to numerically simulate. There are amount of 
numerous identification methods were used. Using 
Lorentz function to replace the distribution function, 
G.Finocchio established the derivative relationship 
between magnetic field intensity and magnetic flux 
density[1]. Zsolt Szabo used exponential function to 
approximate the distribution function of the fitted 
hysteresis model and proposed the Preisach 
identification method based on the closed from Everett 
function, which took a new solution to the parameter 
identification problem of the Preisach model[2]. 

In this paper, a Preisach model is implemented using a 
Recurrent Neural Network (RNN), which is able to predict 
the hysteresis loops of ferromagnetic materials at 
different temperatures. The results show that the 

improved model has the advantages of high identification 
accuracy, fast convergence speed and high success rate. 

2 Hysteresis model 

2.1 Hystersis Modeling Based on Preisach 

The classic Preisach model is expressed using a double 
integral as:  
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where y(t) is the model output at time t, u(t) is the model 
input at time t, while γαβ are rectangular hysteresis 
operators with α and β being the up and down switching 
values. The density function μ(α, β) is a weighting 
function, which has to be determined from experimental 
data. Following a change in coordinates r = (α - β), v = (α 
+ β), it makes (1) rearrange as: 
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which can be discretized to n play operators as follows: 
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where ϕj represents the density function of the jth play 
operator, which has to be identified. The play operator 
can be dentified as: 
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where k0 is the initial condition of the operator and rj re-

presents the memory depth as follows: 
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where j = 1, 2, 3, … n. 

2.2 RNN with Preisach hysteresis operator 

The RNN consists of input layer, hidden layer and output 
layer. The data in the input layer is a time series 
composed of B-H curves under the influence of 



temperature. The function of the hidden layer is to extract 
and save the characteristic value of ferrite sample. The 
output layer outputs the B-H time series of the next 
moment. Figure 1 shows the schematic diagram of the 
structure of the recurrent neural network. 
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Figure 1: Schematic of the improved recurrent neural 
network 

3 Experiments and Results 

3.1 Ferrite Magnetic Properties at Different Tempe-
ratures 

The hysteresis loop of N87 ferrite measured by the ring 

sample method from 25℃ to 125℃ is shown in Figure 2. 

It is obvious from the figure that temperature has a 
significant effect on magnetic properties of ferrite. The 
saturation magnetic density of the sample decreases as 
the temperature increases. 

 

Figure 2: Hysteresis loops of ferrite at different 
temperatures 

3.2 Prediction of the RNN-Preisach model 

All hysteresis loops under the temperature of 25 and 50 
were selected to be the training set of the neural network 
for material feature extraction. In order to determine 
whether the model is overfitting, the validation set of the 

model takes the measurement data at 75℃ , while the 

experimental data at 100℃ and 125℃ were used as the 

test set to test the validation of the model. 

Figure.3 shows the comparison between the predicted 

value of the model and the experimental result at 100℃. 

As can be seen in Figure 4, the proposed model can 

achieve accurate predictions with a limited number of 
training batches. 

 

Figure 3: Model predicted value and experimental value 

of ferrite with different magnetic density at 100 ℃ 

  

Figure 4: Loss Curve on Training set and Validation set 

4 Conclusion 

Magnetic characteristic simulation of ferrite based on 
recurrent neural network can demonstrate the hysteresis 
characteristics of ferrite effectively at different 
temperatures. The improved model takes the Mean 
Squared Error Loss (MSELoss) as the evaluation 
standard. The MSELoss between predicted value and 

experimental value is 0.2% and 0.29% at 100℃  and 

120℃. Moreover, these results prove that the proposed 

model has strong scalability to other magnetic materials 
at different temperature, while it has the potential to 
predict the magnetization characteristics at complex 
working conditions. 
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